If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-8X+2.8=0
a = 1; b = -8; c = +2.8;
Δ = b2-4ac
Δ = -82-4·1·2.8
Δ = 52.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{52.8}}{2*1}=\frac{8-\sqrt{52.8}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{52.8}}{2*1}=\frac{8+\sqrt{52.8}}{2} $
| 3x^2-48x+600=0 | | 6(3x-5)=9(2x-3) | | X=2y-y^2 | | 3x+90=555 | | 7=14i | | F(x)=3x^ | | x^2-16x+200=0 | | 0=16x^2-23x-30 | | 3t/4-1=t/3+4 | | x2+15=7x+3 | | 12/5-6z/5=-z | | 5s+3(5s+2)=26 | | -4b-4(6b-8)=172 | | 7y+9=2y+16 | | 21y^2-8y-4=0 | | 2z/9-5=8 | | 7t/8-5=2t | | x/7+9=3 | | -2x+87=76-3x | | (4x-+1)(4x-5)=(4x+3)² | | 7t/8-5=t | | x3+x2−49x−49=0 | | (2x-1)^2=(2x-1)(x+3) | | 5=x-30 | | (2x-1)^2(x-3)=0 | | 3x=7((4/9)x+(1/9)) | | 9=3+c | | 6(7x-1)=2(3x+11 | | 4+3x+1=5+3x | | -20+6x=-x-28 | | 2x+37=53 | | 4(5+8d)=84 |